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The magnetic and transport properties of the Mn(IV)-rich
perovskites Ca12xSmxMnO3 have been investigated for x440.20.
These compounds exhibit very unusual magnetic behavior, espe-
cially for 0.1444x440.20, where a peak is observed on the M(T )
curves, whose temperature Tpeak increases with x, whereas their
height decreases. Moreover, colossal magnetoresistance proper-
ties are exhibited for the first time in these electron-doped
systems, as shown for x 5 0.15, which exhibits resistance ratios
R0 /R7T, of 102 and 10 at 50 and 100 K, respectively. These
properties are interpreted in terms of a competition between
ferromagnetism and antiferromagnetism, in connection with two
opposing factors, namely, electron delocalization and charge
ordering. ( 1997 Academic Press

Recent studies of the manganese perovskites have shown
that one can induce colossal magnetoresistance (CMR)
properties in lanthanide manganites ¸nMnO

3
by hole dop-

ing. In these systems, starting from the electronic configura-
tion of Mn(III), (t

2g)3(eg)1, mobile holes are created in the
eg band of manganese, either by partly replacing the lan-
thanide element with a divalent cation A, according to the
formula ¸n

1~x
A

x
MnO

3
(1—7), or by introducing a lanthan-

ide deficiency, as in La
1~x

MnO
3

(8, 9). The realization of
such properties requires a high Mn(III) content, i.e., a lan-
thanide-rich composition, in order to avoid the charge
ordering phenomena that appear for the oxides ¸n

0.5
A

0.5
MnO

3
(10, 11).

In contrast, no CMR effect has been noted to date in
Mn(IV)-rich manganites, i.e., manganites containing only
a few percent of lanthanide. The investigation of such com-
pounds should be fruitful since they correspond to the
doping of a Mn(IV) insulating matrix by electrons, so that
a transition toward a metallic or semimetallic state should
be induced. The recent evidence for large negative mag-
netoresistance in Bi

1~x
Ca

x
MnO

3
(12), although modest

compared to lanthanide manganites, i.e., R
0
/R

7T
&3 at

50 K, is in agreement with this viewpoint. For this reason we
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have revisited the ¸nMnO
3
—CaMnO

3
system on the

calcium-rich side. In the present letter, we report on the
electron-doped manganites Ca

1~x
Sm

x
MnO

3
(0(x40.20)

that exhibit a semimetallic to insulating transition in the
temperature range 100—150 K, together with an induced
ferromagnetic component at low temperature, so that CMR
properties with resistance ratios R

0
/R

7T
larger than 102 can

be obtained at 50 K.
The oxides Ca

1~x
Sm

x
MnO

3
were prepared from mix-

tures of CaO, Sm
2
O

3
, and MnO

2
heated at 1000°C in air,

pressed into the form of bars, heated at 1200°C, and then
sintered 12 h at 1500°C. The purity, homogeneity, and com-
position of the samples were checked by X-ray diffraction,
electron diffraction, and EDS analysis.

Resistivity measurements (four-probe method) were per-
formed with a physical properties measurement system
(PPMS, Quantum Design), on 2]2]10 mm bars, so that
the resistivity o().cm)"10~1]R()). Curves were ob-
tained on cooling, the 7-T magnetic field being applied at
300 K. Magnetization measurements were obtained by
means of a SQUID magnetometer.

The magnetization curves M(¹ ) in a magnetic field of
1.45 T (Fig. 1) show that for low x values (0(x40.12)
a ferromagnetic state is induced at low temperature, i.e., for
¹4100 K. The corresponding R(¹ ) curves (Fig. 2) clearly
establish that, for this composition range, the resistance of
the samples is significantly decreased with respect to that of
CaMnO

3
, tending toward semimetallic behavior between

110 and 300 K, for x ranging from 0.075 to 0.12. The
properties of this first series of samples can be explained by
the fact that doping with samarium introduces mobile elec-
trons into the eg band, so that the interaction of these
carriers via t

2g spins induces ferromagnetic coupling. The
tendency to exhibit a transition toward a ferromagnetic
metallic state is clearly seen by the anomaly in the R (¹ )
curve of the x"0.1 sample (inset Fig. 2), which appears at
¹

C
"110 K, in agreement with the M(¹ ) curve (Fig. 1).
For higher x values (0.144x(0.20) the M (¹ ) curves

are quite unusual (Fig. 1). One observes an abrupt collapse
8



FIG. 2. Temperature dependence of the resistance R for the series
Ca

1~x
Sm

x
MnO

3
(x values are labeled on the graph). Inset: Enlargement of

the x"0.1 curve.

FIG. 1. Temperature dependence of the magnetization M registered
under 1.45 T for the series Ca

1~x
Sm

x
MnO

3
(x values are labeled on the

graph).
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of the magnetic moment at low temperature, for x larger
than 0.14, indicating a return to the antiferromagnetic state
for ¹(100 K. But the most striking feature concerns the
M(¹ ) peak, which is rather sharp for 0.154x40.20. This
phenomenon, also observed for Bi

0.2
Ca

0.8
MnO

3
(12, 13) for

x ranging from 0 to 0.25, can be explained by competition
between electron delocalization and charge ordering. The
introduction of electrons at the eg level of Mn(III) favors
electron delocalization and consequently induces the ferro-
magnetic component. By contrast the tendency to charge
ordering and consequently to antiferromagnetism is favored
as x increases and approaches x"0.25, in agreement
with the neutron diffraction study previously made for
(La,Ca)MnO

3
(14). The competition between these two

opposing effects favors electronic delocalization for low
x values (far from x"0.25), leading to ferromagnetism,
whereas charge ordering becomes predominant for higher
x values, i.e., as x tends to 0.25, leading to antiferromag-
netism. The increase of the ¹

1%!,
from 105 K for x"0.15 to

150 K for x"0.20 and the decrease of the peak intensity as
x increases is thus easily explained by a rapid expansion of
the antiferromagnetic state (charge ordering) at the expense
of ferromagnetism (electronic delocalization). The R (¹ )
curves observed for x"0.14 and 0.20 (Fig. 2) are also in
agreement with this interpretation: they show a transition
(at 100 and 150 K) from a semimetallic to a semiconducting
state as ¹ decreases, similar to that observed in the charge-
ordered manganites ¸n

0.5
A

0.5
MnO

3
(10, 11).

The R(¹ ) curves in a 7 T magnetic field (Fig. 3) exhibit
negative magnetoresistance over the whole domain 0(
x40.20. The low x values 0(x(0.12, which exhibit
a ferromagnetic transition, are characterized by small
magnetoresistance ratios R
0
/R

7 T
, ranging from 1.8 for

x"0.05 (Fig. 3a) to 1.5 for x"0.10 (Fig. 3b) at 50 K. Such
a small effect is comparable to that described for the
bismuth manganite Bi

1~x
Ca

x
MnO

3
(12), for which a resist-

ance ratio (RR) of 3 is observed at 50 K. This can be
explained by the fact that the resistance in the ferromagnetic
state and near the ferromagnetic state (i.e., above ¹

C
) is

rather low, so that the application of a magnetic field cannot
dramatically modify the resistance. In contrast, as soon as
we reach the peak region on the M (¹ ) curves, i.e.,
0.144x(0.20, involving a competition between ferro-
magnetism and antiferromagnetism, much higher RR
are obtained. The RR value increases to 6 at 50 K for
x"0.14 (Fig. 3c), whereas the sample x"0.15 exhibits
CMR with resistance ratios of 102 at 50 K and larger than
10 at 100 K (Fig. 3d). A further increase of x leads to a
decrease of RR at 50 K, as shown for x"0.16 (Fig. 3e) and
x"0.17 (Fig. 3f ) for which the RR is equal to 10 and 3 at
50 K respectively. Note, however that the RR at 110 K (near
the M (¹ ) peak) of the two latter samples are still high,
i.e., 15 and 7 respectively. Finally, for x"0.20, the mag-
netoresistance effect completely disappears below 120 K,
but the resistance ratio still remains high, close to 10,
around 140 K, the temperature which corresponds to the
M(¹ ) peak (Fig. 3g). The phases Ca

1~x
Sm

x
MnO

3
are very

similar to the charge-ordered manganites ¸n
0.5

A
0.5

MnO
3

(10, 11) which also exhibit CMR properties, in connection
with the ferromagnetic metallic to antiferromagnetic insu-
lating transition at low temperature. However in the latter,
a much larger interpolated cation is required for the appear-
ance of such an effect, since, for example, the manganite
Ca

0.5
Pr

0.5
MnO

3
does not exhibit any CMR effect below



FIG. 3. R(¹ ) curves registered under 0 and 7 T (left axis) and RB"0/RB"7 T ratio (right axis) for the series Ca
1~x

Sm
x
MnO

3
with x"0.05 (a),

x"0.1 (b), x"0.14 (c), x"0.15 (d), x"0.16 (e), x"0.17 (f ), x"0.2 (g).
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7 T. Moreover, it is remarkable that the pure ferromagnetic
metallic state is in fact not observed in the electron-doped
manganites Ca

1~x
Sm

x
MnO

3
. Consequently, it can be

stated that the presence of ferromagnetic interactions within
an antiferromagnetic insulating matrix is sufficient to induce
the CMR effect.

Inspection of half-hysteresis loops registered at 10 and
100 K for Ca

0.85
Sm

0.15
MnO

3
, which is the most CMR

compound, is very instructive (Fig. 4). At 10 K (Fig. 4a) the
magnetization values are limited to less than 0.12 k

B
per

Mn. The first magnetization curve, with an abrupt increase
below 0.2 T indicating the existence of a weak ferromagnetic
component, shows only a slight upturn for magnetic fields
higher than 3 T. At this temperature, the sample is thus an
antiferromagnet with a weak ferromagnetic component
strengthened by the magnetic field. The slight change of the
slope observed for H'3 T induces irreversible modifica-
tions of the M(H ) loops, leading to higher M values for the
decreasing branch of the magnetic field. As ¹ is increased,
the effectiveness of the magnetic field in inducing a ferro-
magnetic component increases. On the M(H) half-loop reg-
istered at 100 K (Fig. 4b), one can see that the magnetization
reaches values up to 0.8 k

B
/Mn in 5 T. Here again, hyster-

esis exists for the largest magnetic field values, but in low
magnetic fields (H40.2 T) the curves become reversible, so
that the sample state is not modified after a complete cycle,
in contrast to the behavior observed at 10 K. Finally, it
appears thus that the magnetic behavior of this CMR com-
pound is that of an antiferromagnet, where a weak fer-
romagnetic component exists, so that it can be considered as
a ferrimagnet. The application of a magnetic field tends to
reinforce the ferromagnetic component at the expense of
antiferromagnetism; this effect is amplified as the temper-
ature is increased. Nevertheless, the lack of magnetization
saturation even in 5 T and at ¹"100 K suggests that
higher magnetic fields are required to reach the expected



FIG. 3—Continued
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magnetic moment of &3 k
B
/Mn. The physical properties of

Ca
0.85

Sm
0.15

MnO
3

may be explained via a double ex-
change (DE) model (15). The magnetic field application
FIG. 4. Magnetic field dependence of the magnetization M f
reinforces the ferromagnetic component, so that the carrier
scattering decreases, thereby inducing negative magneto-
resistance.
or Ca
0.85

Sm
0.15

MnO
3

(x"0.15) at 10 K (a) and 100 K (b).
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